Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia.

نویسندگان

  • David G Harper
  • Edward G Stopa
  • Victoria Kuo-Leblanc
  • Ann C McKee
  • Kentaro Asayama
  • Ladislav Volicer
  • Neil Kowall
  • Andrew Satlin
چکیده

The suprachiasmatic nuclei (SCN) are necessary and sufficient for the maintenance of circadian rhythms in primate and other mammalian species. The human dorsomedial SCN contains populations of non-species-specific vasopressin and species-specific neurotensin neurons. We made time-series recordings of core body temperature and locomotor activity in 19 elderly, male, end-stage dementia patients and 8 normal elderly controls. Following the death of the dementia patients, neuropathological diagnostic information and tissue samples from the hypothalamus were obtained. Hypothalamic tissue was also obtained from eight normal control cases that had not had activity or core temperature recordings previously. Core temperature was analysed for parametric, circadian features, and activity was analysed for non-parametric and parametric circadian features. These indices were then correlated with the degree of degeneration seen in the SCN (glia/neuron ratio) and neuronal counts from the dorsomedial SCN (vasopressin, neurotensin). Specific loss of SCN neurotensin neurons was associated with loss of activity and temperature amplitude without increase in activity fragmentation. Loss of SCN vasopressin neurons was associated with increased activity fragmentation but not loss of amplitude. Evidence for a circadian rhythm of vasopressinergic activity was seen in the dementia cases but no evidence was seen for a circadian rhythm in neurotensinergic activity. These results provide evidence that the SCN is necessary for the maintenance of the circadian rhythm in humans, information on the role of neuronal subpopulations in subserving this function and the utility of dementia in elaborating brain-behaviour relationships in the human.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional organization of the circadian timing system

The circadian timing system establishes daily rhythms in behavior and physiology throughout the body, ensuring that functions like activity, sleep and hormone release are appropriately timed. Research suggests that his temporal synchrony within the body is quite important for health and survival. In mammals, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) drives rhythms in ...

متن کامل

Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding.

Circadian rhythms in neuronal ensemble, subpopulations, and single unit activity were recorded in the suprachiasmatic nuclei (SCN) of rat hypothalamic slices. Decomposition of the ensemble pattern revealed that neuronal subpopulations and single units within the SCN show surprisingly short periods of enhanced electrical activity of approximately 5 h and show maximal activity at different phases...

متن کامل

Hypothalamic Expression of a lmmunocytochemical Analysis Novel Product, VGF:

VGF is the designation for a new 712 amino acid protein, regulated by nerve growth factor (NGF) in PC12 cells, that has not been previously described in the CNS. Northern blot analysis with a nick-translated VGF cDNA probe revealed a single band of mRNA in the brain with a molecular weight identical to that found in PC1 2 cells. The current paper presents a series of immunocytochemical studies ...

متن کامل

Efferent Projections of Prokineticin 2 Expressing Neurons in the Mouse Suprachiasmatic Nucleus

The suprachiasmatic nucleus (SCN) in the hypothalamus is the predominant circadian clock in mammals. To function as a pacemaker, the intrinsic timing signal from the SCN must be transmitted to different brain regions. Prokineticin 2 (PK2) is one of the candidate output molecules from the SCN. In this study, we investigated the efferent projections of PK2-expressing neurons in the SCN through a ...

متن کامل

Seasonal Encoding by the Circadian Pacemaker of the SCN

The circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 131 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2008